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Abstract. This paper continues the development of the least-squares methodology for the
solution of the incompressible Navier-Stokes equations started in Part I. Here we again use a velocity-
flux first-order Navier-Stokes system, but our focus now is on a practical algorithm based on a discrete
negative norm.
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1. Introduction. In this paper, we consider the reduced velocity-flux Navier-
Stokes equations given by

−ν(∇tU)t + Utu +∇p = f in Ω(1.1)
∇tu = 0 in Ω(1.2)

U−∇ut = 0 in Ω(1.3)
u = 0 on Γ .(1.4)

We recall that the velocity flux variable U is defined as

U = ∇ut ,

that is, U is a matrix with entries Uij = ∂uj/∂xi, 1 ≤ i, j ≤ n. In [2], referred to
hereafter as Part I, we studied an abstract least-squares functional for (1.2)-(1.4) of
the form

J−1(U,u, p) = | − (∇tU)t +∇p +
1
ν

(
Utu− f

)
|2−1

+‖∇tu‖2
0 + ‖U−∇ut‖2

0 ,(1.5)

where the negative seminorm | · |−1 is defined by

|f |−1 = sup
φ∈H1

0 (Ω)

(f, φ)
|φ|1

, ∀f ∈ H−1(Ω) .(1.6)
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We recall that |f |1 = (Sf, f), where S denotes the solution operator for the Poisson
equation with homogeneous Dirichlet boundary condition; see [2], [3]. Since the exact
evaluation of this norm is not computationally feasible, direct minimization of (1.5)
is not practical. However, theoretical results from Part I will be used here as a
vehicle for establishing optimal error estimates for a practical counterpart of (1.5)
based on a computable discrete negative norm. Such negative norms have been first
proposed in [3]-[4]. In [4] and [5], discrete negative norms were used to develop
least-squares methods for a perturbed form of the velocity-vorticity-pressure Stokes
equations, which include as a particular case the equations of linear elasticity. A
negative norm least-squares method for the Stokes problem in primitive variables was
also considered in [4].

2. Summary of results. For convenience, in this section we collect several the-
oretical and technical results that are relevant to our analysis. Here and henceforth,
C is a generic constant that may change meaning with each occurrence, but is inde-
pendent of the grid parameter h. In some instances, C will depend on a parameter λ
that belongs to a compact set Λ ⊂ RI +. In such cases we assume that this dependence
is uniform in λ. Throughout this paper, Xh

d with d ≥ 0 will denote a generic finite
element space defined with respect to a uniformly regular triangulation T h of Ω. It
is assumed that Xh

d has the usual approximation property: for each u ∈ Hd+1(Ω),
there exists uh ∈ Xh

d such that

‖u− uh‖0 + h|u− uh|1 ≤ Chd+1‖u‖d+1 .(2.1)

This property, for example, is valid for piecewise polynomial finite element spaces of
degree d ≥ 1; see [8]. Furthermore, we assume that the inverse inequality

‖uh‖1 ≤ Ch−1‖uh‖0(2.2)

holds for Xh
d .

2.1. Discrete negative norm. In this subsection, we introduce two discrete
norms related to (1.6) and establish certain discrete equivalence properties. Here we
follow the development in [3].

Consider the discrete Dirichlet problem
find uh ∈ Xh

d ∩H1
0 (Ω) such that∫

Ω

∇uh · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈ Xh
d ∩H1

0 (Ω) .(2.3)

We let Sh denote the solution operator of (2.3), that is, Shf = uh ∈ Xh
d ∩ H1

0 (Ω)
for f ∈ H−1(Ω) if and only if uh solves (2.3). Using Sh, we introduce the discrete
negative norm

|f |−1,h = (Shf, f)1/2 .(2.4)

Note that

|f |−1,h = sup
φh∈Xh

d∩H1
0 (Ω)

(f, φh)
|φh|1

, ∀f ∈ H−1(Ω) ,(2.5)

that is, norm (2.4) is simply the restriction of the definition of the negative norm
(1.6) to Xh

d . This discrete norm is still infeasible in general because of the need to
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solve (2.3) on the same (fine) grid as the primary problem. Following [3], we consider
instead a computable discrete negative norm based on a preconditioner for Sh, that
is, a symmetric linear operator Bh : Xh

d 7→ Xh
d that is spectrally equivalent to Sh in

the sense that

1
C

(Shvh, vh) ≤ (Bhvh, vh) ≤ C(Shvh, vh), ∀vh ∈ Xh
d .(2.6)

For example, Bh may represent one or two symmetric multigrid V-cycles applied
to variational problem (2.3) or to optimization problem (2.5). In contrast to the
spectral equivalence (2.6), the symmetry of Bh is not essential, but it does simplify
the analysis. In order to extend Bh to all of L2(Ω), let Qh : L2(Ω) 7→ Xh

d denote the
L2 orthogonal projection onto Xh

d . We assume that Xh
d is such that Qh is bounded

with respect to the norm in H1
0 (Ω) (see [3]), i.e., that

‖Qhu‖1 ≤ C‖u‖1, ∀u ∈ H1
0 (Ω) .(2.7)

We then have the following result concerning Qh.
Lemma 2.1. Assume that (2.1) is valid for Xh. Then

|(I −Qh)v|−1 ≤ Ch‖v‖0, ∀v ∈ L2(Ω) .(2.8)

For the proof of this result, we refer to [3].
Equivalence relation (2.6) can be extended to all of L2(Ω) using Qh. Indeed, by

the definitions of Qh and Sh, we have that Sh = ShQh. Similarly, by the symmetry
of Bh, we have that Bh = BhQh. Hence, (2.6) now holds for any L2 function. A
computable discrete negative norm can now be defined based on operator Bh:

|f |−h = (Shf, f)1/2 = ((h2I + Bh)f, f)1/2, ∀f ∈ L2(Ω) .(2.9)

Both norms (2.4) and (2.9) can be associated with a discrete negative inner product,
but in what follows we are particularly interested in the inner product associated with
(2.9):

(f, g)−h = ((h2I + Bh)f, g) = (f, (h2I + Bh)g), f, g ∈ L2(Ω) .(2.10)

Certain fundamental equivalence properties of the discrete norm (2.9) now follow. In
particular, the rather ad hoc term h2I that is added to Bh in (2.9) is necessary for
the equivalence of this norm and the usual negative norm.

Lemma 2.2. For any u ∈ L2(Ω),

1
C
|u|−1 ≤ |u|−h ≤ C (h‖u‖0 + |u|−1) , ∀h > 0 .(2.11)

The proof of this lemma can be found in [3] or [4]. We conclude this section with
a summary of technical results that will be used frequently throughout the paper.

Lemma 2.3. Assume that inverse inequality (2.2) holds for Xh
d . Then

|∂uh

∂xi
|−h ≤ C‖uh‖0, ∀uh ∈ Xh

d ,(2.12)

|uv|−h ≤ C
(
h‖u‖1 + ‖u‖0

)
‖v‖1 , ∀u, v ∈ H1(Ω) ,(2.13)
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|uhv|−h ≤ C‖uh‖0‖v‖1 , ∀uh ∈ Xh
d , v ∈ H1(Ω) ,(2.14)

|uv|−h ≤ C‖u‖0‖v‖2 , ∀u ∈ L2(Ω), v ∈ H2(Ω) .(2.15)

Proof. To show (2.12), we first estimate the negative norm of the derivative as
follows:

|∂uh

∂xi
|−1 = sup

φ∈H1
0 (Ω)

∫
Ω

∂uh

∂xi
φdx

|φ|1

= sup
φ∈H1

0 (Ω)

∫
Ω

∂φ
∂xi

uhdx

|φ|1
≤ ‖uh‖0 .

Then, using (2.11) and (2.2), we obtain

|∂uh

∂xi
|−h ≤ C

(
h‖∂uh

∂xi
‖0 + |∂uh

∂xi
|−1

)
≤ C (h‖uh‖1 + ‖uh‖0)
≤ C‖uh‖ ,

which proves (2.12). To show (2.13), for 2 ≤ q ≤ 6 we have H1(Ω) ⊂ Lq(Ω) with
compact imbedding; see Lemma 7, Part I. In particular, H1(Ω) imbeds compactly
into L4(Ω) and, therefore,

‖uv‖0 ≤ C‖u‖1‖v‖1 .

Thus, (2.11) and the inequality |uv|−1 ≤ ‖u‖0‖v‖1 (see Lemma 7 of Part I) yield

|uv|−h ≤ C (h‖uv‖0 + |uv|−1)
≤ C (h‖u‖1‖v‖1 + ‖u‖0‖v‖1) ,

which proves (2.13). To show (2.14), we use (2.13) and (2.2):

|uhv|−h ≤ C(h‖uh‖1 + ‖uh‖0)‖v‖1 ≤ C‖uh‖0‖v‖1 .

Finally, the proof of (2.15) is similar to that of (2.14), but uses the imbedding of
H2(Ω) into C0(Ω).

2.2. Hypotheses. In this section, we state the hypotheses that will be assumed
throughout the rest of this paper. Let

X = L2(Ω)n2
×H1

0 (Ω)n × L2
0(Ω) .(2.16)

Let Xh denote a finite element subspace of X with approximation properties to be
stated below. In general, Xh can be constructed as a direct product of the spaces Xh

d .
Assume that the set {(λ,U(λ) ≡ (U(λ),u(λ), p(λ))) |λ ∈ Λ;U(λ) ∈ X} forms

a regular branch of solutions of the Navier-Stokes equations, so that, in particular,
(U(λ),u(λ), p(λ)) is a nonsingular solution of (1.1)-(1.4) for every λ ∈ Λ. As in
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Part I, the parameter λ is identified with the Reynolds number Re. We recall that
nonsingularity of (U(λ),u(λ), p(λ)) implies that the linearized problem

−(∇tÛ)t + λ(U(λ)tû + Û
t
u(λ)) +∇p̂ = f∗(2.17)

Û−∇ût = 0(2.18)
∇tû = 0(2.19)

along with the boundary condition (1.4) has a unique (weak) solution (Û, û, p̂) ∈
L2(Ω)n2 × H1

0 (Ω)n × L2
0(Ω) for each f∗ ∈ H−1(Ω)n, and that the mapping f∗ 7→

(Û, û, p̂) is continuous for all λ ∈ Λ. As a result, the a priori estimate

‖Û‖0 + ‖û‖1 + ‖p̂‖0 ≤ C
(
| − (∇tÛ)t + λ(U(λ)tû + Û

t
u(λ)) +∇p̂|−1(2.20)

+ ‖∇tû‖0 + ‖Û−∇ût‖0

)
,

is valid for all λ ∈ Λ. We also recall the a priori estimate established in [6] for the
velocity-flux Stokes problem:

‖U‖0 + ‖u‖1 + ‖p‖0 ≤ C
(
| − (∇tU)t +∇p|−1 + ‖∇tu‖0 + ‖U−∇ut‖0

)
.(2.21)

We also need some additional hypotheses on the regular branch (U(λ),u(λ), p(λ)))
and the approximating space Xh:
H-1. The regular branch {(λ, (U(λ),u(λ), p(λ))) |λ ∈ Λ} of solutions of the Navier-

Stokes equations is such that Λ 3 λ 7→ U(λ) = (U(λ),u(λ), p(λ)) is a contin-
uous map from Λ to

Wm = Hm(Ω)n2
× [Hm+1(Ω) ∩H1

0 (Ω)]n × [Hm(Ω) ∩ L2
0(Ω)],(2.22)

for some integer m ≥ 1.
H-2. There exists an integer d ≥ 1 such that, for every U = (U,u, p) ∈ Wd, one can

find Uh = (Uh,uh, ph) ∈ Xh such that

‖U − Uh‖X ≤ Chd‖U‖Wd
.(2.23)

H-3. There exists a continuous function λ 7→ Uh(λ) ≡ (Uh(λ),uh(λ), ph(λ)) such
that

‖U(λ)− Uh(λ)‖X ≤ Chd̃‖U(λ)‖Wd̃
,(2.24)

where d̃ = min{d, m}.
Existence of (Uh(λ),uh(λ), ph(λ)) in condition H-3 is assured by Theorem 3, Part I.
Condition H-2 is a reasonable assumption on the finite element space Xh, and it can
be satisfied by choosing Xh to be a direct product of continuous piecewise polynomial
finite element spaces. For example, for the choice

Xh = [Xh
1 ]n

2
× [Xh

2 ∩H1
0 (Ω)]n × [Xh

1 ∩ L2
0(Ω)] ,(2.25)

estimate (2.23) holds with d = 2. For the convenience of implementation, the space
Xh can also be defined using equal order interpolation, that is, using the same scalar
finite element space Xh

d for the approximation of all solution components. It is also
possible to consider the use of discontinuous piecewise polynomial spaces for U and
p, but this requires accounting for the jumps at the element edges by adding extra
terms to the least-squares functional; see [4].
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3. Discrete negative norm least-squares. In this section, we introduce a
discrete equivalent of the negative norm functional (1.5) considered in Part I. In con-
trast to the earlier abstract functional, our new functional admits a computationally
feasible least-squares method for the numerical solution of the Navier-Stokes equa-
tions. Nevertheless, results that have been established in Part I will be critical for the
analyses of the discrete negative norm method treated here.

In what follows, we consider methods based on the minimization of the least-
squares functional

J−h(Uh,uh, ph)(3.1)
= | − (∇tUh)t +∇ph + λ

(
Ut

huh − f
)
|2−h + ‖∇tuh‖2

0 + ‖Uh −∇ut
h‖2

0 ,

over the finite dimensional space Xh. The least-squares principle for (3.1) is given by:
find Uh = (Uh,uh, ph) ∈ Xh such that

J−h(Uh,uh, ph) ≤ J−h(Vh,vh, qh), ∀Vh ∈ Xh .(3.2)

Next, we introduce several variational forms that will be needed in the sequel.
The first is given by

B−h(Uh,Vh) =
(
−(∇tUh)t +∇ph + λ

(
Ut

huh − f
)
,(3.3)

−(∇tVh)t +∇qh + λ
(
Ut

hvh + Vt
huh

))
−h

+ (∇tuh,∇tvh) + (Uh −∇ut
h,Vh −∇vt

h) .

Form (3.3) corresponds to the Euler-Lagrange equation for (3.1): a necessary condition
for Uh to satisfy least-squares principle (3.2) is that Uh solve

find Uh = (Uh,uh, ph) ∈ Xh such that

B−h(Uh,Vh) = 0, ∀Vh ∈ Xh .(3.4)

Once a basis for Xh is chosen, then (3.4) corresponds to a nonlinear system of algebraic
equations, which we denote symbolically by F−h(λ,Uh) = 0.

The second form corresponds to a linearization of B−h(·, ·) at Ũ :

DB−h[Ũ ](U ,V)(3.5)

=
(
−(∇tŨ)t +∇p̃ + λ

(
Ũ

t
ũ− f

)
, λ

(
Utv + Vtu

))
−h

+
(
−(∇tU)t +∇p + λ

(
Ũ

t
u + Utũ

)
,

−(∇tV)t +∇q + λ
(
Ũ

t
v + Vtũ

))
−h

+ (∇tu,∇tv) + (U−∇ut,V −∇vt) .

Our next form corresponds to the linear (Stokes) part of (3.3):

BS
−h(U ,V) =

(
−(∇tU)t +∇p,−(∇tV)t +∇q

)
−h

(3.6)

+ (∇tu,∇tv) + (U−∇ut,V −∇vt) .

Similarly, the nonlinear part of (3.3) is given by

BG
−h(U ,V) =

(
−(∇tU)t +∇p + λ

(
Utu− f

)
, λ

(
Utv + Vtu

))
−h

(3.7)

+
(
λ

(
Utu− f

)
,−(∇tV)t +∇q

)
−h

,
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and linearization of (3.7) at Ũ is given by

DBG
−h[Ũ ](U ,V)(3.8)

=
(
−(∇tŨ)t +∇p̃ + λ

(
Ũ

t
ũ− f

)
, λ

(
Utv + Vtu

))
−h

+
(
−(∇tU)t +∇p + λ

(
Ũ

t
u + Utũ

)
, λ

(
Ũ

t
v + Vtũ

))
−h

+
(
λ

(
Ũ

t
u + Utũ

)
,−(∇tV)t +∇q

)
−h

.

With the above definitions, we have the identities

B−h(U ,V) = BS
−h(U ,V) + BG

−h(U ,V)(3.9)

and

DB−h[Ũ ](U ,V) = BS
−h(U ,V) +DBG

−h[Ũ ](U ,V) .(3.10)

3.1. Canonical form of the nonlinear problem. As in Part I, nonlinear
problem (3.4) can be cast in a canonical form given in terms of a linear (Stokes)
operator and a nonlinear operator. In the present context, we make the following
identifications for these operators:

T−h : Y 7→ Xh defined by Uh = T−hg for g ∈ Y if and only if

BS
−h(Uh,Vh) = (g,Vh), ∀Vh ∈ Xh,(3.11)

and
G−h : Λ×Xh → Y defined by g = G−h(λ,Uh) for Uh ∈ Xh if and
only if

BG
−h(Uh,Vh) = (g,Vh), ∀Vh ∈ Xh ,(3.12)

where

Y = L2(Ω)n2
×H−1(Ω)n × L2(Ω) .(3.13)

Then, problem (3.4) takes the form

F−h(λ,Uh) ≡ Uh + T−h ·G−h(λ,Uh) = 0 .(3.14)

In what follows, we will frequently appeal to variational representations of various
identities involving operator F−h(λ, Ũ) and its Fréchet derivative DUF−h(λ, Ũ) given
in terms of forms (3.3), (3.7), (3.5), and (3.6). In particular, we have the following
variational identification of the evaluation of F−h at a given function Ûh:

U∗h = F−h(λ, Ûh) iff BS
−h(U∗h ,Vh) = B−h(Ûh,Vh), ∀Vh ∈ Xh ,(3.15)

i.e., the function U∗h is obtained by solving a variational problem for the Stokes form
(3.6) with right-hand side given by form (3.3) evaluated at Ûh. To obtain a variational
equation for Fréchet derivative DUF−h(λ, Ũ), note that

DUF−h(λ, Ũ) = I + T−h ·DUG−h(λ, Ũ) .

It is not difficult to see that
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DUG−h(λ, Ũ)· : Λ×Xh → Y defined by g = DUG−h(λ, Ũ)·Ûh for Ûh ∈
Xh if and only if

DBG
−h[Ũ ](Ûh,Vh) = (g,Vh), ∀Vh ∈ Xh .(3.16)

As a result, given an element Ûh ∈ Xh, we have that

U∗h = DUF−h(λ, Ũ) · Ûh iff BS
−h(U∗h ,Vh) = DB−h[Ũ ](Ûh,Vh), ∀Vh ∈ Xh ,(3.17)

i.e., U∗h is obtained by solving a variational problem for Stokes form (3.6), but with
right-hand side given by DB−h[Ũ ](Ûh, ·). Finally, if Ũ is such that DUF−h(λ, Ũ)−1

exists, we have

Ûh = DUF−h(λ, Ũ)−1Uh
∗ iff DB−h[Ũ ](Ûh,Vh) = BS

−h(U∗h ,Vh), ∀Vh ∈ Xh .(3.18)

4. Discretization error estimates. The main goals of this section are to show
that discrete nonlinear problem (3.4) is well-posed in the sense that it has a regular
branch of solutions, provided the Navier-Stokes equations have such a branch, and
to establish discretization error estimates for the solution of (3.4). Our analysis is
carried out under the hypotheses H-1 - H-3 stated in §2.2. In order to keep notation
simple, in what follows, we agree to use W to denote the space Wd̃ and h̃ to denote
hd̃. We recall that d̃ = min{m, d}, where m and d are the integers from H-1 and
H-2, respectively. Throughout this section, δ is used to denote a quantity that may
change in meaning, except that it depends only on the maximum value of ‖U(λ)‖W
over λ ∈ Λ.

4.1. Coercivity and continuity bounds. In this section, we develop several
technical results that deal with coercivity properties and continuity estimates for forms
(3.3), (3.5), and (3.6). These results will be needed in the sequel to establish existence
of regular branches of solutions and corresponding error estimates for problem (3.4).

Lemma 4.1. Assume that Uh(λ) ∈ Xh satisfies H-3. Then

| − (∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
|−h ≤ δh̃ .(4.1)

Proof. The triangle inequality and the fact that U(λ) solves Navier-Stokes velocity-
flux equations (1.1)-(1.4) yield

| − (∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
|−h

≤ |(∇t(Uh(λ)−U(λ))t|−h + |∇(ph(λ)− p(λ))|−h

+ λ|Uh(λ)tuh(λ)−U(λ)tu(λ)|−h .

To estimate the first term, we use upper bound (2.11) in Lemma 2.2, Lemma 7 of
Part I, and H-3:

|∇t(Uh(λ)−U(λ))|−h

≤ C
(
h‖∇t(Uh(λ)−U(λ))‖0 + |∇t(Uh(λ)−U(λ))|−1

)
≤ C

(
h‖Uh(λ)−U(λ)‖1 + ‖Uh(λ)−U(λ)‖0

)
≤ Ch̃‖U(λ)‖W .
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Similarly,

|∇(ph(λ)− p(λ))|−h ≤ Ch̃‖U(λ)‖W .

For the last term, we use the triangle inequality, (2.14)-(2.15), and H-3:

λ|Uh(λ)tuh(λ)−U(λ)tu(λ)|−h

≤ λ
(
|Uh(λ)t(uh(λ)− u(λ))|−h + |(Uh(λ)−U(λ))tu(λ)|−h

)
≤ λ

(
‖Uh(λ)‖0‖uh(λ)− u(λ)‖1 + ‖Uh(λ)−U(λ)‖0‖u(λ)‖2

)
≤ λh̃‖U(λ)‖W

(
‖Uh(λ)‖0 + ‖u(λ)‖2

)
.

Estimate (4.1) now follows by observing from (2.24) that ‖Uh(λ)‖0 can be bounded
by ‖U(λ)‖d̃.

Lemma 4.2. Form BS
−h(·, ·) is continuous and coercive on Xh ×Xh.

Proof. We obtain coercivity using definition (3.6), the lower bound in (2.11), and
estimate (2.21):

BS
−h(Uh,Uh) = | − (∇tUh)t +∇ph|2−h + ‖∇tuh‖2

0 + ‖Uh −∇ut
h‖2

0

≥ 1
C

(
| − (∇tUh)t +∇ph|2−1 + ‖∇tuh‖2

0 + ‖Uh −∇uh‖2
0

)
≥ 1

C

(
‖Uh‖2

0 + ‖uh‖2
1 + ‖ph‖2

0

)
.

To show continuity of BS
−h(·, ·), we use first the Cauchy and triangle inequalities:

BS
−h(Uh,Vh) ≤ | − (∇tUh)t +∇ph|−h| − (∇tVh)t +∇qh|−h

+‖∇tuh‖0‖∇tvh‖0 + ‖Uh −∇ut
h‖0‖Vh −∇vt

h‖0

≤
(
‖(∇tUh)|−h + |∇ph|−h

)(
‖(∇tVh)|−h + |∇qh|−h

)
+‖uh‖1‖vh‖1 +

(
‖Uh‖0 + ‖uh‖1

)(
‖Vh‖0 + ‖vh‖1

)
.

From (2.12) in Lemma 2.3, it follows that

|(∇tUh)t|−h ≤ C‖Uh‖0

and

|∇ph|−h ≤ C‖ph‖0 ,

with similar bounds for the terms with Vh and qh. As a result,

BS
−h(Uh,Vh) ≤ C

(
‖Uh‖0 + ‖ph‖0

)(
‖Vh‖0 + ‖qh‖0

)
+

+‖uh‖1‖vh‖1 + (‖Uh‖0 + ‖uh‖1) (‖Vh‖0 + ‖vh‖1)
≤ C‖Uh‖X‖Vh‖X .

Lemma 4.3. Assume that Uh(λ) satisfies H-3. Then, there exists an h0 > 0 such
that, for any h ≤ h0, we have

1
C
‖Vh‖2

X ≤ DB−h[Uh(λ)](Vh,Vh), ∀Vh ∈ Xh ,(4.2)



10 P. BOCHEV, T. MANTEUFFEL AND S. F. MCCORMICK

i.e., form DB−h[Uh(λ)](·, ·) is coercive on Xh ×Xh for all sufficiently small h.
Proof. We want to show that, for every Vh ∈ Xh,

DB−h[Uh(λ)](Vh,Vh)(4.3)

=
(
−(∇tUh(λ))t +∇ph(λ) + λ

(
Uh(λ)tuh(λ)− f

)
, 2λVt

hvh

)
−h

+ | − (∇tVh)t +∇qh + λ
(
Uh(λ)tvh + Vt

huh(λ)
)
|2−h

+ ‖∇tvh‖2
0 + ‖Vh −∇vh

t‖2
0

≥ C
(
‖Vh‖2

0 + ‖vh‖2
1 + ‖qh‖2

0

)
.

Using the Cauchy-Schwarz inequality, (4.1) in Lemma 4.1, and (2.14) in Lemma 2.3,
the first term in (4.3) is bounded above as follows:(

−(∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
, 2λVt

hvh

)
−h

(4.4)

≤ 2λ| − (∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
|−h|Vt

hvh|−h

≤ δh̃‖Vh‖0‖vh‖1

≤ δh̃‖Vh‖2
X .

Using the triangle inequality, for the second term in (4.3) we obtain

| − (∇tVh)t +∇qh + λ
(
Uh(λ)tvh + Vt

huh(λ)
)
|−h

≥ | − (∇tVh)t +∇qh + λ
(
U(λ)tvh + Vt

hu(λ)
)
|−h

−λ|(Uh(λ)−U(λ))tvh + Vt
h(uh(λ)− u(λ))|−h .

Next, using again the triangle inequality, (2.13), (2.14), and (2.24) yield

|(Uh(λ)−U(λ))tvh + Vt
h(uh(λ)− u(λ))|−h

≤ |(Uh(λ)−U(λ))tvh|−h + |Vt
h(uh(λ)− u(λ))|−h

≤ C(h‖Uh(λ)−U(λ)‖1 + ‖Uh(λ)−U(λ)‖0)‖vh‖1 + ‖Vh‖0‖uh(λ)− u(λ)‖1

≤ δh̃
(
‖Vh‖0 + ‖vh‖1

)
≤ δh̃‖Vh‖X .

Thus, the second term in (4.3) is bounded below as follows:

| − (∇tVh)t +∇qh + λ
(
Uh(λ)tvh + Vt

huh(λ)
)
|2−h(4.5)

≥ | − (∇tVh)t +∇qh + λ
(
U(λ)tvh + Vt

hu(λ)
)
|2−h − δh̃‖Vh‖2

X .

Estimates (4.4)-(4.5) together with the lower bound in (2.11) and a priori estimate
(2.20) yield

DB−h[Uh(λ)](Vh,Vh)
≥ | − (∇tVh)t +∇qh + λ

(
U(λ)tvh + Vt

hu(λ)
)
|2−h + ‖∇tvh‖2

0 +

‖Vh −∇vh
t‖2

0 − δh̃‖Vh‖2
X

≥
(
‖Vh‖2

0 + ‖vh‖2
1 + ‖qh‖2

0

)
− δh̃‖Vh‖2

X .

According to H-1, the constant δ is uniformly bounded for all λ ∈ Λ. Thus, bound
(4.2) is valid for all h ≤ h0 = 1/(2δ).
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Lemma 4.4. Assume that Uh(λ) satisfies H-3. Then

B−h(Uh(λ),Vh) ≤ δh̃‖Vh‖X, ∀Vh ∈ Xh .(4.6)

Proof. With U(λ) solving the the velocity-flux Navier-Stokes equations, using the
Cauchy-Schwarz and triangle inequalities together with (2.24), we estimate the linear
terms in (3.3) as follows:(

Uh(λ)−∇uh(λ)t
,Vh −∇vh

t
)

(4.7)

=
(
(Uh(λ)−U(λ))−∇(uh(λ)− u(λ))t,Vh −∇vh

t
)

≤
(
‖Uh(λ)−U(λ)‖0 + ‖uh(λ)− u(λ)‖1

)(
‖Vh‖0 + ‖vh‖1

)
≤ δh̃‖Vh‖X

and (
∇tuh(λ),∇tvh

)
=

(
∇t(uh(λ)− u(λ)),∇tvh

)
(4.8)

≤ ‖uh(λ)− u(λ)‖1‖vh‖1

≤ δh̃‖Vh‖X .

To estimate the remaining first term in (3.3), we proceed as in the proof of Lemma
4.3: (

−(∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
,(4.9)

−(∇tVh)t +∇qh + λ
(
Uh(λ)tvh + Vt

huh(λ)
))
−h

≤ | − (∇tUh(λ))t +∇ph(λ) + λ
(
Uh(λ)tuh(λ)− f

)
|−h(

| − (∇tVh)t +∇qh|−h + λ|Uh(λ)tvh + Vt
huh(λ)|−h

)
≤ δh̃

(
|(∇tVh)t|−h + |∇qh|−h + λ|Uh(λ)tvh + Vt

huh(λ)|−h

)
,

where the last inequality used (4.1). Next, we bound the first and second terms on
the right-hand side of (4.9) using (2.12):

|(∇tVh)t|−h ≤ C‖Vh‖0(4.10)

and

|∇qh|−h ≤ C‖qh‖0.(4.11)

For the remaining term in (4.9), we first use the triangle inequality:

|Uh(λ)tvh + Vt
huh(λ)|−h(4.12)

≤ |(Uh(λ)−U(λ))tvh|−h + |Vh
t(uh(λ)− u(λ))|−h

+ |U(λ)tvh|−h + |Vt
hu(λ)|−h .

Then, as in the proof of Lemma 4.2, (2.13) and (2.24) yield

|(Uh(λ)−U(λ))tvh|−h(4.13)
≤ C

(
h‖Uh(λ)−U(λ)‖1 + ‖Uh(λ)−U(λ)‖0

)
‖vh‖1 ≤ δh̃‖vh‖1 .
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Similarly, (2.14) and (2.24) yield

|Vh
t(uh(λ)− u(λ))|−h ≤ C‖Vh‖0‖uh(λ)− u(λ)‖1 ≤ δh̃‖Vh‖0 .(4.14)

Finally, (2.13) yields

|U(λ)vh|−h ≤ C(h‖U(λ)‖1 + ‖U(λ)‖0)‖vh‖1 ≤ δ‖vh‖1(4.15)

and (2.15) yields

|Vhu(λ)|−h ≤ C‖Vh‖0‖u(λ)‖2 ≤ δ‖Vh‖0 .(4.16)

Now, (4.9)-(4.16) combine to yield(
−(∇tUh(λ))t +∇ph(λ) + λ

(
Uh(λ)tuh(λ)− f

)
,(4.17)

−(∇tVh)t +∇qh + λ
(
Uh(λ)tvh + Vt

huh(λ)
))
−h

≤ δh̃
(
(1 + δ(1 + h̃))‖Vh‖0 + ‖qh‖0 + δ(1 + h̃)‖vh‖1

)
≤ δh̃‖Vh‖X .

Bound (4.6) now follows from (4.7), (4.8), and (4.17).
Lemma 4.5. Let Ũ1

h, Ũ2
h, and Uh be arbitrary elements of Xh. Then

|DB−h[Ũ1
h](Uh,Vh)−DB−h[Ũ2

h](Uh,Vh)|(4.18)

≤ C‖Ũ1
h − Ũ2

h‖X‖Uh‖X‖Vh‖X
(
1 + ‖Ũ1

h‖X + ‖Ũ2
h‖X

)
Proof. First note that (3.10) implies

DB−h[Ũ1
h](Uh,Vh)−DB−h[Ũ2

h](Uh,Vh)(4.19)
= DBG

−h[Ũ1
h](Uh,Vh)−DBG

−h[Ũ2
h](Uh,Vh)

= λ
(
∇t(Ũ

1

h − Ũ
2

h))t +∇(p̃1
h − p̃2

h) + λ
(
(Ũ

1

h)tũ1
h − (Ũ

2

h)tũ2
h

)
,

Ut
hvh + Vt

huh

)
−h

+ λ
(
−(∇tUh)t +∇ph, (Ũ

1

h − Ũ
2

h)tvh + Vt
h(ũ1

h − ũ2
h)

)
−h

+ λ2

((
(Ũ

1

h)tuh + (Uh)tũ1
h, (Ũ

1

h)tvh + Vt
hũ

1
h

)
−h

−
(
(Ũ

2

h)tuh + (Uh)tũ2
h, (Ũ

2

h)tvh + Vt
hũ

2
h

)
−h

)
+ λ

(
(Ũ

1

h − Ũ
2

h)tuh + (Uh)t(ũ1
h − ũ2

h),−(∇tVh)t +∇qh

)
h

.

The first term in (4.19) can be estimated using the Cauchy-Schwarz and triangle
inequalities and (2.14):

λ
(
∇t(Ũ

1

h − Ũ
2

h))t +∇(p̃1
h − p̃h

2 ) + λ
(
(Ũ

1

h)tũ1
h − (Ũ

2

h)tũ2
h

)
,Ut

hvh + Vt
hu

h
)
−h

≤ λ|∇t(Ũ
1

h − Ũ
2

h))t +∇(p̃1
h − p̃h

2 ) + λ
(
(Ũ

1

h)tũ1
h − (Ũ

2

h)tũ2
h

)
|−h

·
(
|(Uh)tvh|−h + |Vt

huh|−h

)
≤ λ

(
|∇t(Ũ

1

h − Ũ
2

h))t|−h + |∇(p̃1
h − p̃2

h)|−h + λ|(Ũ1

h)tũ1
h − (Ũ

2

h)tũ2
h|−h

)
·
(
‖Uh‖0‖vh‖1 + ‖Vh‖0‖uh‖1

)
.
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Now, using (2.12), we have

|∇t(Ũ
1

h − Ũ
2

h))t|−h + |∇(p̃1
h − p̃2

h)|−h

≤ C
(
‖Ũ1

h − Ũ
2

h‖0 + ‖p̃1
h − p̃2

h‖0

)
≤ C‖Ũ1

h − Ũ2
h‖X,

and, using the triangle inequality and (2.14), we have

λ|(Ũ1

h)tũ1
h − (Ũ

2

h)tũ2
h|−h ≤ λ

(
|(Ũ1

h)t(ũ1
h − ũ2

h)|−h + |(Ũ1

h − Ũ
2

h)tũ2
h|−h

)
≤ λC

(
‖Ũ1

h‖0‖ũ1
h − ũ2

h‖1 + ‖Ũ1

h − Ũ
2

h‖0‖ũ2
h‖1

)
≤ λC‖Ũ1

h − Ũ2
h‖X

(
‖Ũ1

h‖X + ‖Ũ2
h‖X

)
.

Therefore,

|∇t(Ũ
1

h − Ũ
2

h))t +∇(p̃1
h − p̃2

h) + λ
(
(Ũ

1

h)tũ1
h − (Ũ

2

h)tũ2
h

)
|−h

≤ λC‖Ũ1
h − Ũ2

h‖X
(
‖Ũ1

h‖X + ‖Ũ2
h‖X

)
.

Since

‖Uh‖0‖vh‖1 + ‖Vh‖0‖uh‖1 ≤ C‖Uh‖X‖Vh‖X ,

we find that the first term in (4.19) is bounded by

λC‖Ũ1
h − Ũ2

h‖X‖Uh‖X‖Vh‖X
(
‖Ũ1

h‖X + ‖Ũ2
h‖X

)
.

The second term in (4.19) can be estimated from the Cauchy-Schwarz and triangle
inequalities, (2.12), and (2.14) as follows:

λ
(
−(∇tUh)t +∇ph, (Ũ

1

h − Ũ
2

h)tvh + Vt
h(ũ1

h − ũ2
h)

)
−h

≤ λ| − (∇tUh)t +∇ph|−h

(
|(Ũ1

h − Ũ
2

h)tvh|−h + |Vt
h(ũ1

h − ũ2
h)|−h

)
≤ λC (‖Uh‖0 + ‖ph‖0)

(
‖(Ũ1

h − Ũ
2

h)‖0‖vh‖1 + ‖Vh‖0‖ũ1
h − ũ2

h‖1

)
≤ λC‖Ũ1

h − Ũ2
h‖X‖Uh‖X‖Vh‖X .

For the third term, we repeatedly use the triangle inequality and (2.14):(
(Ũ

1

h)tuh + Ut
hũ

1
h, (Ũ

1

h)tvh + Vhũ
1
h

)
−h

−
(
(Ũ

2

h)tuh + Ut
hũ

2
h, (Ũ

2

h)tvh + Vhũ
2
h

)
−h

=
(
(Ũ

1

h − Ũ
2

h)tuh + Ut
h(ũ1

h − ũ2
h), (Ũ

1

h)tvh + Vhũ
1
h

)
−h

+
(
(Ũ

2

h)tuh + Ut
hũ

2
h, (Ũ

1

h − Ũ
2

h)tvh + Vt
h(ũ1

h − ũ2
h)

)
−h

≤
(
|(Ũ1

h − Ũ
2

h)tuh|−h + |Ut
h(ũ1

h − ũ2
h)|−h

)(
|(Ũ1

h)tvh|−h + |Vh
tũ1

h|−h

)
+

(
|(Ũ1

h − Ũ
2

h)tvh|−h + |Vt
h(ũ1

h − ũ2
h)|−h

)(
|(Ũ2

h)tuh|−h + |Ut
hũ

2
h|−h

)
≤ C

(
‖Ũ1

h − Ũ
2

h‖0‖uh‖1 + ‖ũ1
h − ũ2

h‖1‖Uh‖0

)(
‖Ũ1

h‖0‖vh‖1 + ‖Vh‖0‖ũ1
h‖1

)
+

(
‖Ũ1

h − Ũ
2

h‖0‖vh‖1 + ‖ũ1
h − ũ2

h‖1‖Vh‖0

)(
‖Ũ2

h‖0‖uh‖1 + ‖Uh‖0‖ũ2
h‖1

)
≤ C‖Ũ1

h − Ũ2
h‖X‖Uh‖X‖Vh‖X

(
‖U1

h‖X + ‖U2
h‖X

)
.
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The last term in (4.19) is bounded using the Cauchy-Schwarz inequality, (2.12), and
(2.14):

λ
(
(Ũ

1

h − Ũ
2

h)tuh + Ut
h(ũ1

h − ũ2
h),−(∇tVh)t +∇qh

)
−h

≤ λ|(Ũ1

h − Ũ
2

h)tuh + Ut
h(ũ1

h − ũ2
h)|−h| − (∇tVh)t +∇qh|−h

≤ λ
(
|(Ũ1

h − Ũ
2

h)tuh|−h + |Ut
h(ũ1

h − ũ2
h)|−h

)(
| − (∇tVh)t|−h + |∇qh|−h

)
≤ λC

(
‖Ũ1

h − Ũ
2

h‖0‖ûh‖1 + ‖Ut
h‖0‖ũ1

h − ũ2
h‖1

)(
‖Vh‖0 + ‖qh‖0

)
≤ λC‖Ũ1

h − Ũ2
h‖X‖Uh‖X‖Vh‖X .

4.2. Abstract approximation result. This section introduces an abstract ap-
proximation result concerning regular branches of solutions for problems of the form

Fh(λ,Uh) = 0 .(4.20)

We assume that Fh(λ,Uh) is a continuous, differentiable mapping defined on space
Λ×Xh ⊂ RI + ×X. For this result, we let Uh(λ) ∈ Xh and define

εh(λ) = ‖Fh(λ,Uh(λ))‖X,(4.21)

γh(λ) = ‖DUFh(λ,Uh(λ))−1‖L(Xh,Xh),(4.22)

S(Uh, α) = {Vh ∈ Xh | ‖Uh − Vh‖X ≤ α},(4.23)

and

Lh(λ, α) = sup
Vh∈S(Uh(λ),α)

‖DUFh(λ,Uh(λ))−DUFh(λ,Vh)‖L(Xh,Xh) .(4.24)

The following abstract theorem is a version of the implicit function theorem presented
in [8], modified to suit our needs.

Theorem 4.6. Let Uh(λ) ∈ Xh be a given function such that λ 7→ Uh(λ) is
continuous and mapping DUF (λ,Uh(λ)) is an isomorphism of Xh onto itself for all
λ ∈ Λ. Assume also that there exists h0 > 0 such that, for h ≤ h0, the following
conditions hold:
A-1. γh(λ) ≤ C uniformly in λ ∈ Λ;
A-2. limh→0 supλ∈Λ εh(λ) = 0;
A-3. limα→0 supλ∈Λ Lh(λ, α) = 0.
Then there exist α > 0, h1 > 0, and Ũh(λ) ∈ C0(Λ,Xh) such that, for all h ≤ h1, we
have:

1. {(λ, Ũh(λ)), λ ∈ Λ} is a regular branch of solutions of Fh(λ, Ũh(λ)) = 0;
2. for each λ ∈ Λ, Ũh(λ) is the only solution in S(Uh(λ), α) and the upper bound

‖Ũh(λ)− Vh‖X ≤ C‖Fh(λ,Vh)‖X(4.25)

is valid for all Vh ∈ S(Uh(λ), α).
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4.3. Existence of regular branches and error estimates. Here we apply
Theorem 4.6 to discrete negative-norm least-squares problem (3.4). In this context,
we identify abstract problem (4.20) with canonical form (3.14) for problem (3.4). We
thus have

εh(λ) = ‖F−h(λ,Uh(λ))‖X,(4.26)

γh(λ) = ‖DUF−h(λ,Uh(λ))−1‖L(Xh,Xh),(4.27)

and

Lh(λ, α) = sup
Vh∈S(Uh(λ),α)

‖DUF−h(λ,Uh(λ))−DUF−h(λ,Vh)‖L(Xh,Xh) .(4.28)

We continue to assume that H-1-H-3 hold, so that {λ,U(λ)} is a regular branch of
solutions of the velocity-flux first-order Navier-Stokes equations, and that Xh ⊂ X
satisfies the appropriate approximation properties.

Theorem 4.7. There exist α > 0, h1 > 0, and Ũh(λ) ∈ C0(Λ,Xh) such that, for
all h ≤ h1, {(λ, Ũh(λ)), λ ∈ Λ} is a regular branch of solutions of F−h(λ,Uh) = 0 that
is unique in the ball S(Uh(λ), α). Furthermore, if m ≥ 1 and d ≥ 1 are the integers
from H-1 and H-2, respectively, and d̃ = min{d, m}, then

‖Ũh(λ)−U(λ)‖0 + ‖ũh(λ)− u(λ)‖1 + ‖p̃h(λ)− p(λ)‖0 ≤ Cδhd̃ ,(4.29)

where δ depends only on λ and

‖U(λ)‖Wd̃
= ‖U(λ)‖d̃ + ‖u(λ)‖d̃+1 + ‖p(λ)‖d̃ .

Proof. Let Uh(λ) be discrete function that satisfies H-3. The first part of the
theorem would follow if we could show that DUF−h(λ,Uh(λ)) is an isomorphism of
Xh onto itself, that the norm of its inverse is bounded, and that hypotheses A-1 -
A-3 of Theorem 4.6 are satisfied.

To this end, we first show that DUF−h(λ,Uh(λ)) is an isomorphism by proving
that, for any U∗h ∈ Xh, problem

DUF−h(λ,Uh(λ)) · Ûh = U∗h

has a unique solution Ûh ∈ Xh. According to (3.18), this problem is equivalent to the
variational problem

find Ûh ∈ Xh such that

DB−h[Uh(λ)](Ûh,Vh) = BS
−h(U∗h ,Vh), ∀Vh ∈ Xh .

Lemma 4.3 asserts coercivity of form DBG
−h[Uh(λ)](·, ·), and Lemma 4.2 implies that

BS
−h(Uh

∗ , ·) is a continuous linear functional on Xh. Hence, existence and uniqueness
of Ûh for all λ ∈ Λ follows by the Lax-Milgram lemma. Thus, DUF−h(λ,Uh(λ)) is an
isomorphism of Xh onto itself.

Next, we show that the norm of DUF−h(λ,Uh(λ))−1 is bounded using Lemma
4.3, Lemma 4.2, and a standard elliptic finite element argument:

1
C
‖Ûh‖2

X ≤ DB−h[Uh(λ)](Ûh, Ûh) = BS
−h(U∗h , Ûh) ≤ C‖U∗h‖X‖Ûh‖X ,



16 P. BOCHEV, T. MANTEUFFEL AND S. F. MCCORMICK

so

‖DUF−h(λ,Uh(λ))−1‖L(Xh,Xh) = sup
U∗h∈Xh

‖DUF−h(λ,Uh(λ))−1 · U∗h‖Xh

‖U∗h‖Xh

= sup
U∗h∈Xh

‖Ûh‖X
‖U∗h‖Xh

≤ C .

This also verifies A-1.
To verify remaining hypotheses A-2 and A-3, we first estimate (4.26), that is,

the norm ‖F−h(λ,Uh(λ))‖X. To this end, note that

U∗h = F−h(λ,Uh(λ))

if and only if U∗h solves the variational problem
find U∗h ∈ Xh such that

BS
−h(U∗h ,Vh) = B−h(Uh(λ),Vh), ∀Vh ∈ Xh .

From Lemma 4.2, we know that BS
−h(·, ·) is coercive, and Lemma 4.4 asserts that

B−h(Uh(λ), ·) is a continuous linear functional on Xh. Hence, there exists a unique
solution U∗h in Xh that satisfies the bound

‖U∗h‖2
X ≤ BS

−h(U∗h ,U∗h) = B−h(Uh(λ),U∗h)

≤ δhd̃‖U∗h‖X .

Thus, we can conclude that

εh(λ) ≤ δhd̃, ∀λ ∈ Λ ,(4.30)

which proves A-2.
To prove A-3, let Vh ∈ S(Uh(λ), α) and Ûh ∈ Xh be arbitrary and define

U1
h = DUF−h(λ,Uh(λ)) · Ûh

and

U2
h = DUF−h(λ,Vh) · Ûh .

According to (3.17), we have that

U1
h − U2

h = DUF−h(λ,Uh(λ)) · Ûh −DUF−h(λ,Vh) · Ûh

if and only if U1
h − U2

h solves the variational problem
find U1

h − U2
h ∈ Xh such that

BS
−h(U1

h − U2
h,Wh) = DB−h[Uh(λ)](Ûh,Wh)−DB−h[Vh](Ûh,Wh), ∀Wh ∈ Xh .

Existence and uniqueness of the solution of this problem follows as before by Lemma
4.2 (coercivity of the left-hand side) and Lemma 4.5 (continuity of the right-hand
side). Moreover, these lemmas also show that

C‖U1
h − U2

h‖2
X ≤ BS

−h(U1
h − U2

h,U1
h − U2

h)

= DB−h[Uh(λ)](Ûh,U1
h − U2

h)−DB−h[Vh](Ûh,U1
h − U2

h)
≤ C‖U1

h − U2
h‖X‖Ûh‖X‖Uh(λ)− Vh‖X (1 + ‖Uh(λ)‖X + ‖Vh‖X) .
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Since Vh ∈ S(Uh(λ), α), we have that

‖Uh(λ)− Vh‖X ≤ α

and

1 + ‖Uh(λ)‖X + ‖Vh‖X ≤ 1 + α + 2‖Uh(λ)‖X.

Moreover, from H-1 - H-3 it follows that ‖Uh(λ)‖X can be bounded uniformly from
above by ‖U(λ)‖W, i.e., the term ‖Uh(λ)‖X + ‖Vh‖X is bounded uniformly in λ.
Hence,

‖U1
h − U2

h‖X ≤ αδ‖Ûh‖X .

Since ‖ · ‖L(Xh,Xh) is the supremum over Ûh ∈ Xh with ‖Ûh‖X = 1, then

Lh(λ, α) = sup
Vh∈S(Uh(λ),α)

‖DUF (λ,Uh(λ))−DUF (λ,Vh)‖L(Xh,Xh) ≤ αC, ∀λ ∈ Λ ,

which proves A-3. Thus, problem (3.4) has a regular branch of solutions that is
unique in the ball S(Uh(λ), α).

To complete the proof of the theorem, it remains to prove error estimate (4.29).
Using (4.25) with Uh(λ), we obtain from (4.30) that

‖Ũh(λ)− Uh(λ)‖X ≤ C‖F−h(λ,Uh(λ))‖X = εh(λ) ≤ Cδhd̃ .

The error estimate now follows by observing that δ depends only on λ and ‖U(λ)‖W.

5. Numerical examples. In this section, we report on some numerical results
obtained with the negative norm least-squares method of §3. For a more detailed
computational study of this method, as well as a discussion of implementation details,
we refer to [1]. For simplicity, the negative norm method has been implemented using
equal order interpolation for all variables. In particular, to construct Xh, we used
a bilinear finite element space defined with respect to a uniform partition of Ω into
rectangles.

In our first experiment, we consider two smooth solutions given by

u1 = exp(πy)(x cos(πx)− sin(πx)/π)/2
u2 = exp(πy) sin(πx)x/2(5.1)
p = exp(πy) cos(πx)

and

u1 = exp(x) cos(y) + sin(y)
u2 = − exp(x) sin(y) + 1− x3(5.2)
p = sin(y) cos(x) + xy2 − 1/6− sin(1)(1− cos(1)).

In both cases, Ω is taken to be the unit square in RI 2, U is set equal to ∇ut, and the
data is computed by evaluating equations (1.1)-(1.3) at the given exact solution. The
main objective of this experiment is to verify computationally the theoretical error



18 P. BOCHEV, T. MANTEUFFEL AND S. F. MCCORMICK

Table 5.1
Convergence rates of the negative norm least-squares method.

L2 error rates H1 error rates
Variable Example (5.1) Example (5.2) Example (5.1) Example (5.2)

u 1.79 1.70 1.03 1.02
U 1.50 1.44 0.59 0.60
p 1.10 1.16 0.53 0.55

estimates in Theorem 4.7. In view of the choice of the space Xh, we expect that (4.29)
will hold with d̃ = 1, that is,

‖Uh(λ)− U(λ)‖X ≤ Ch .

To estimate convergence rates numerically, computations were carried out using grids
with 16x16 and 32x32 square cells. These results are reported in Table 1. Here bold
face symbols are used to denote the rates of the errors included in (4.29). Note that
these observed rates are at least as good as the rate d̃ = 1 predicted by Theorem 4.7.

For the second experiment, we consider the two-dimensional driven cavity flow.
For this flow, Ω is the unit square in RI 2, f = 0, and the velocity boundary condition
(1.4) is given by

u =
{

(1, 0)t for y = 1
0 otherwise .

Computations were carried out for Re = 100 using grids with 20x20 and 32x32 square
cells. In Fig. 1, we compare velocity profiles computed using the negative norm
method with the benchmark results of [7]. Profiles of the first velocity component
(denoted by u in Fig.1) are measured along the line x = 0.5, whereas profiles of the
second component (denoted by v in Fig.1) are measured along the horizontal line
y = 0.5. Although grids employed in our computations are relatively coarse, results
obtained for the 32x32 case show good agreement with the benchmark data. One can
also expect that the use of nonuniform grids which cluster the points along the top
wall of the cavity will yield even better results.
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